Abstract

The conversion of N1-methyladenosine (m1A) to N6-methyladenosine (m6A) on RNA is an important step for both allowing efficient reverse transcription read-though for sequencing analysis and mapping modifications in the transcriptome. Enzymatic transformation is often used, but the efficiency of the removal can depend on local sequence context. Chemical conversion through the application of the Dimroth rearrangement, in which m1A rearranges into m6A under heat and alkaline conditions, is an alternative, but the required alkaline conditions result in significant RNA degradation by hydrolysis of the phosphodiester backbone. Here, we report novel, mild pH conditions that catalyze m1A-to-m6A arrangement using 4-nitrothiophenol as a catalyst. We demonstrate the efficient rearrangement in mononucleosides, synthetic RNA oligonucleotides, and RNAs isolated from human cell lines, thereby validating a new approach for converting m1A-to-m6A in RNA samples for sequencing analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.