Abstract

This research presents a microfluidically reconfigurable additively manufactured antenna. The proposed configuration demonstrates the applicability of additive manufacturing (AM) for fabricating intricate and lightweight structures. Additionally, it established the feasibility of microfluidic technology for achieving continuous frequency reconfigurability. The proposed antenna utilizes the dielectric fluid for reconfiguration, facilitated by pumping it in and out of microfluidic structures using a syringe pump. The incorporation of dielectric fluid in the channels alters the effective dielectric constant of the substrate and causes perturbations in the electric field distributions around the metallic patch. To validate the proposed idea, a prototype of the microfluidically reconfigurable 3D-printed antenna is designed, fabricated, and tested. The operating frequency is reconfigured from 2.38 to 3.49 GHz with a tuning range of 1.11 GHz, and the radiation pattern remains stable across considered cases. It is observed that measured results are in good agreement with simulated values. The prototype of the antenna design is fabricated using a single machining process, eliminating the need for traditional machining. The proposed antenna’s configuration is advantageous for various applications such as IEEE802.11b/g/n, IEEE802.15.1, and IEEE802.16.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call