Abstract

Three hydrogels namely, microcrystalline cellulose (MCC), microcrystalline cellulose-carboxymethyl cellulose (MCC-CMC) and microcrystalline cellulose-xylan (MCC-xylan) are synthesized using ethylene glycol diglycidyl ether as crosslinker. For the chemical characterization, FT-IR spectroscopy is adopted, whereas gel fraction and swelling ratio are used for the physical characterization of the hydrogels. Coarse morphology of hydrogels is further visualized by microscopic observation. The rheological characterization proves that MCC-CMC gel withstands higher strain to resist permanent deformation than the other two gels. The hydrogels are used for the loading and in vitro release of Cephalexin. The in vitro delivery is carried out in various simulated body fluids such as phosphate buffer saline (PBS), artificial intestinal fluid (AIF) and artificial gastric fluid (AGF). MCC-CMC is observed to deliver Cephalexin individually 15% in AGF, 86% in AIF, 98% in PBS and 98% in consecutive buffers (AGF followed by AIF and PBS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.