Abstract
This paper presents a novel cell stretching micro device having two-dimensional array of micro chambers. It enables an in situ time-lapse observation of stretched cell by using an optical microscope with high measurement efficiency. The presented device consists of a cell culture dish and the array of micro chambers made of silicone elastomer and extension structures made of photocurable resin, and is fabricated with MEMS technology. The fabrication process of the thin micro chamber array combines photoresist mold and lift-off process based on conventional photolithography. The fabricated device has 134micro chambers in 5μm or less thickness. It was demonstrated that the fabricated micro device could be used to make in-situ time-lapse observation of cell responses to stretching under optical microscopy. In addition, the influence of the chamber thickness to the quality of the microscope image observed was evaluated. It is confirmed that the proposed device having two-dimensional array of the thin micro chambers makes it possible to observe cell response for stretch stimuli with high quality and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.