Abstract

Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS, and are therefore an attractive medium for membrane protein characterization. While mass spectrometry has also been reported as a technique compatible with copolymer extraction, most studies have focused on lipidomics, which involves solvent extraction of lipids from nanodiscs prior to mass-spectrometry analysis. In this study, mass spectrometry proteomics was used to investigate whether there are qualitative or quantitative differences in the mammalian plasma membrane proteins extracted with SMA compared to a detergent control. For this, cell surface proteins of 3T3L1 fibroblasts were biotinylated and extracted using either SMA or detergent. Following affinity pull-down of biotinylated proteins with NeutrAvidin beads, samples were analyzed by nanoLC-MS. Here, we report for the first time, a global proteomics protocol for detection of a mammalian cell “SMALPome”, membrane proteins incorporated into SMA nanodiscs. Removal of SMA from samples prior to processing of samples for mass spectrometry was a crucial step in the protocol. The reported surface SMALPome of 3T3L1 fibroblasts consists of 205 integral membrane proteins. It is apparent that the detergent extraction method used is, in general, quantitatively more efficient at extracting proteins from the plasma membrane than SMA extraction. However, samples prepared following detergent extraction contained a greater proportion of proteins that were considered to be “non-specific” than in samples prepared from SMA extracts. Tantalizingly, it was also observed that proteins detected uniquely or highly preferentially in pull-downs from SMA extracts were primarily multi-spanning membrane proteins. These observations hint at qualitative differences between SMA and detergent extraction that are worthy of further investigation.

Highlights

  • Integral membrane proteins carry out a wide range of important biological functions in cells

  • This study is the first that takes a global proteomic approach to investigate proteins that can be extracted from the plasma membrane of mammalian cells using styrene maleic acid (SMA) copolymer

  • This study identified 205 integral membrane proteins plus 42 proteins with signal peptides by proteomics following cell surface biotinylation, treatment of cells with SMA, removal of insoluble material, and NeutrAvidin pull-down

Read more

Summary

Introduction

Integral membrane proteins carry out a wide range of important biological functions in cells. A disadvantage of using detergents for extraction is that integral proteins are often unstable and/or difficult to functionally characterize when removed from their natural bilayer environment (Lee et al, 2016a). These issues may sometimes be overcome by screening for the “correct detergent” or reconstitution of protein back into model bilayers following purification, they still pose a major bottleneck in the study of integral membrane proteins (Linke, 2009; Moraes et al, 2014)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call