Abstract

In this work, a new method was developed for multi-element determination of Cd and Mn in samples of sugarcane spirit (cachaca) by FAAS using the air-assisted dispersive liquid-liquid microextraction (AA-DLLME). After univariate and multivariate optimizations (mixture design), the experimental conditions were as follows: 5.2 mL of sample at pH 8.5, 0.7 mL 10% (w/v) NaCl solution, 120 μL of trichlorethylene (extraction solvent) containing 1-(2-pyridylazo)-2-naphthol (PAN) at 0.05% (w/v) as chelating agent, six cycles of stirring the mixture with a glass syringe, and 3 min of centrifugation. In these conditions, the calibration curve obtained for Cd was Abs = 0.0158CCd + 0.0333, with R2 0.9951 and for Mn was Abs = 0.0011CMn + 0.0142 and R2 0.9911. The limits of detection, enrichment factor, and consumption index were, respectively, 0.51 μg L−1, 79 and 0.07 mL for Cd, and 1.64 μg L−1, 18, and 0.28 mL for Mn. Precision was evaluated at concentrations of 5 and 10 μg L−1, and RSD% (N = 10) was 0.97% and 6.6% for Cd and 2.8% and 4.5% for Mn, respectively. Addition and recovery tests in samples of Brazilian cachaca were performed to evaluate the accuracy, and recoveries were 87% to 120%, with concentrations found between 1.20 and 3.05 μg L−1 for Cd and between 6.98 and 14.4 μg L−1 for Mn. The developed method proved to be sensitive, efficient, simple, fast, and having low reagent consumption, and of applicability not previously reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call