Abstract

Methanol steam reforming has been used for in-situ hydrogen production and supply for proton exchange membrane fuel cell (PEMFC), while its power density and energy efficiency still needs to be improved. Herein, we present a novel methanol steam reforming microreactor based on the stacked wave sheets and copper foam for highly efficient hydrogen production. The structural of stacked wave sheets and copper foam, and their roles in the microreactor are described, methanol catalytic combustion is adopted to supply heat for methanol steam reforming reaction and enables the microreactor to work automatically. For catalyst carrier, a fractal body-centered cubic model is established to study the flow characteristics and chemical reaction performances of the copper foam with coated catalyst layer. Both simulation and experimental results showed that the reformate flowrate increases with the increasing of microreactor layers and methanol solution flowrate, the discrepancies of methanol conversion between simulation and experimental tests are less than 7%. Experimental results demonstrated that the reformate flowrate of 1.0 SLM can be achieved with methanol conversion rate of 65%, the output power of the microreactor is 159 W and power density is 395 W/L. The results obtained in this study indicates that stacked wave sheets and copper foam can uniform the reactant flow and improve the hydrogen production performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call