Abstract

In order to apply the PEFC power generation system in near future, ITRI is cooperating with Taiwanese local electrical company to develop a compact methanol reformer. This methanol reformer can simultaneously catalyze autothermal and steam reforming reactions, depending on the application. Except the catalyst for methanol steam reforming and low temperature water gas shift reactions, ITRI has developed several catalysts for autothermal reforming, high temperature water-gas shift, and CO preferential oxidation reactions. We have integrated these catalysts to assemble a methanol reformer prototype. The characteristics of this methanol reformer operated at steady state are the maximum flow rate of hydrogen being 39 L/min (corresponding to 2.4 kWe), H2 concentration being 45∼65%, CO concentration less than 50 ppm, and the cold startup time less than 35 minutes. In addition, we have been developing a catalyst for methanation reaction. We hope to shorten the start-up time to less than 20 minutes and the volume of the reformer being reduced in half by integrating a good methanation catalyst into my next generation methanol reformer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call