Abstract

Superior delivery of anticancer drug gemcitabine has been achieved with mesoporous silica nanoparticles (MSN), by addressing three challenges in MSN synthesis: (i) MSN was synthesized with particle diameter between 42 to 64 nm, to utilize enhanced permeability and retention effect of small particles, (ii) MSN of larger internal pore diameter (2.5-5.2 nm) was made as a tunable morphological parameter to optimize both drug loading and its release rate, in a controlled, differential manner and (iii) higher drug release at extracellular cancer-cell pH (5.5) was achieved, compared to physiological pH (7.4) of healthy cells. MSN with above features was made by the sol-gel route, with trimethylmethoxysilane as a size-quencher and hexane or decane as a pore expander. Highest gemcitabine loading of 14.92% and a cumulative release of 58% at pH 5.5 could be obtained with the optimum sample having pore diameter of 5.2 nm, in comparison to the desirably low 22% release at pH 7.4. Consequently, we obtained 60% cell growth-inhibition of pancreatic cancer cell-line (MIA Paca-2), via gemcitabine loaded MSN. This was possible because of increased gemcitabine release from MSN with larger pore diameter of 5.2 nm, simultaneously demonstrating good target-selectivity of MSN as a drug-carrier, due to engineering of its pore-size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call