Abstract

A mesoporous silica nanoparticle (MSN)-based nanoplatform has attracted growing attention in the biomedical field due to the unique characteristics of MSNs including a high surface area, tunable pore sizes, colloidal stability, ease of functionalization, and desirable biocompatibility. Typically, MSNs are designed as nanocarriers for the incorporation of a variety of contrast agents for bioimaging, which can address the intrinsic drawbacks of contrast agents, including poor solubility in water, rapid photobleaching, and low stability. This review summarizes the recent advances in the field of MSN-based nanoprobes for fluorescence imaging and photoacoustic (PA) imaging applications. The approaches for the incorporation of contrast agents into MSN-based nanoplatforms including encapsulating contrast agents within MSNs, covalently conjugating contrast agents on the surface or pores of MSNs, physically absorbing contrast agents in the pores of MSNs, and doping contrast agents in the framework of MSNs are introduced. MSN-based nanoprobes for fluorescence imaging and PA imaging are discussed. The enhanced fluorescence imaging and PA imaging performances of MSN-based nanoprobes relative to the bare contrast agents are introduced and the underlying mechanisms are discussed in detail. Finally, current challenges and perspectives of MSN-based nanoprobes in the bioimaging field are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call