Abstract

Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials. Research priorities include standardization of animal models and virus stocks for studying disease pathogenesis and efficacy of medical countermeasures; development of MERS-CoV diagnostics; improved access to nonhuman primates to support preclinical research; studies to better understand and control MERS-CoV disease, including vaccination studies in camels; and development of a standardized clinical trial protocol. Partnering with clinical trial networks in affected countries to evaluate safety and efficacy of investigational therapeutics will strengthen efforts to identify successful medical countermeasures.

Highlights

  • Preclinical development of and research on potential Middle East respiratory syndrome coronavirus (MERS-CoV) medical countermeasures remain preliminary; advancements are needed before most countermeasures are ready to be tested in human clinical trials

  • 2016, a total of 26 countries had reported locally acquired or exported cases from the Arabian Peninsula, including 2 cases in the United States identified during May 2014 in healthcare personnel who became ill after working in Saudi Arabia [7,8]

  • Animal Models and Virus Strains Preclinical development of MERS-CoV medical countermeasures has been hindered by several factors, including limited data on the natural history of MERS-CoV infection in humans; the lack of a small animal model that is naturally susceptible to MERS-CoV; and the inability to consistently replicate severe human disease in MERSCoV–infected nonhuman primates (NHPs)

Read more

Summary

ONLINE REPORT

Development of Medical Countermeasures to Middle East Respiratory Syndrome Coronavirus. Animal Models and Virus Strains Preclinical development of MERS-CoV medical countermeasures has been hindered by several factors, including limited data on the natural history of MERS-CoV infection in humans; the lack of a small animal model that is naturally susceptible to MERS-CoV; and the inability to consistently replicate severe human disease in MERSCoV–infected nonhuman primates (NHPs). Another factor is limited access to clinical samples and recent virus isolates; for example, a MERS-CoV strain isolated from a patient in 2012, rather than a more recently isolated strain, is currently used by most investigators worldwide. These models may be vital in understanding the virology and immunology

University of Texas Medical
Acute localized to widespread pneumonia with transient
Infection studies in a small number of dromedaries
Method
US Centers for Disease Control
Kong culture
Multiple host
VLP neutralization
Fully deleted adenovirus
Camel vaccination
Adenovirus vectored spike protein
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.