Abstract

Abstract A new generation of asphalt binders with mecanomutable properties has been developed, with the aim of obtaining smart materials able to adapt their mechanical performance to the real changing load conditions that occur during their service life. These materials are composed of a bituminous matrix that has been modified with magnetic particles that are able to change the mechanical behavior of the binder when they are activated by a magnetic field. This study examines the main variables that govern the mechanical behavior of these materials. The mechanomutable performance of different binders has been demonstrated under various concentrations of magnetic particles. In particular, these binders could increase their stiffness and perform elastically when they are activated by a magnetic field (even at high temperatures), which, once removed, enables the initial properties of the binders to be recovered. The changes induced in the properties of the binder depend on the amount of magnetic particles, the intensity of the magnetic field, and the type of bituminous matrix. The findings open up the possibility of a wide field of applications for its implementation in smart infrastructures, with special interest in the construction, rehabilitation, and maintenance of asphalt pavements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.