Abstract

Soluble microbial products (SMPs) are considered as the main organic components in wastewater treatment plant effluent from biological wastewater treatment systems. To investigate and explore SMP metabolism pathway for further treatment and control, two innovative mechanistically based activated sludge models were developed by extension of activated sludge model no.3 (ASM3). One was the model by combining SMP formation and degradation (ASM3-SMP model) processes with ASM3, and the other by combining both SMP and simultaneous substrate storage and growth (SSSG) mechanisms with ASM3 (SSSG-ASM3-SMP model). The detailed schematic modification and process supplements were introduced for comprehensively understanding all the mechanisms involved in the activated sludge process. The evaluations of these two models were demonstrated by a laboratory-scale sequencing batch reactor (SBR) operated under aerated/non-aerated conditions. The simulated and measured results indicated that SMP comprised about 83% of total soluble chemical oxygen demand (SCOD) in which biomass-associated products (BAPs) were predominant compared with utilization-associated products (UAPs). It also elucidated that there should be a minimum SMP value as the reactive time increases continuously and this conclusion could be used to optimize effluent SCOD in activated sludge processes. The comparative results among ASM3, ASM3-SMP and SSSG-ASM3-SMP models and the experimental measurements (SCOD, ammonia and nitrate nitrogen) showed clearly the best agreement with SSSG-ASM3-SMP simulation values (R=0.993), strongly suggesting that both SMP formation and degradation and SSSG mechanisms are necessary in biologically activated sludge modeling for municipal wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.