Abstract

Maintenance of the DEMO breeding blanket includes the removal and replacement of plasma-facing components. To access the breeding blanket, multiple coolant pipes need to be removed to allow access to the tokamak. As an option to reduce downtime and increase maintenance speed, the pipe-connection concept is developed to allow the removal of multiple pipes at the same time using a remotely operated mechanical connection. The remotely operated multi-pipe Mechanical Pipe Connection (MPC) needs to fulfil multiple requirements, such as high operating temperature and high external forces while at the same time maintaining an acceptable level of sealing between the high-pressure fluid and vacuum surroundings. In addition to the external conditions, the pipes of multiple sizes and fluids are connected in a manifold configuration. Although this will reduce the overall time required to operate the mechanical pipe connection when compared to multiple single-pipe connections, this will introduce additional forces and stresses due the interaction between pipe flow (e.g., simultaneous high- and low-temperature fluid pipes on the same manifold) through the manifold flange. The requirements and the boundary conditions of the multi-pipe MPC are taken into consideration during the design process of MPC. The design process is carried out to find the optimum form and size to allow the mechanical function of the pipe connection during the maintenance phase while withstanding the extreme operating conditions that the MPC will face the during operational phase. The resulting design will then be analyzed using numerical methods to assess the capability of the MPC designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.