Abstract

The study tackles the development of new mathematical means for determining distribution in space and time of technogenic load on atmospheric air as a result of non-burning gas well gushing. To date, modeling is the only tool for studying and solving pressing problems of environmental safety in operation of gas condensate fields. This is especially true for those issues that cannot be solved in practice, such as studying causes and predicting occurrence of emergencies with a low probability of occurrence but with heavy devastating consequences. Drawbacks of the existing mathematical models and methods which make impractical their use in modeling atmospheric pollution in the case of non-burning gas well gush were pointed out. The problem of forecasting the level and distribution of atmospheric air pollution in open gash of a gas well involves two steps: determining amount of gas releases, their parameters and composition; calculation of harmful substance scatter in the near-surface atmosphere. Physical peculiarities of the gas mixture movement through the well and distribution of pollutants in atmospheric air during non-burning well gushing were studied. Mathematical models of stationary and burst release of a mixture of gases from a well were constructed as differential equations with corresponding initial and boundary conditions. These models take into account all major factors affecting intensity of the gas mixture flow during an emergency gushing and adequately describe the process. A new mathematical model of pollutant spread in atmospheric air during release from a well has been constructed. This model, unlike the existing ones, is a set of three analytical dependences describing distribution of contaminants in space and time in the case of burst, short-term and continuous releases, respectively. The results of mathematical calculations were compared with the data of field measurements of concentration of pollutants that were part of the gas flow during emergency release at a gas condensate field in Poltava region. It was established that the modeling error did not exceed 15% for all substances under study. This comparison has confirmed high adequacy of the developed models and the possibility of their application to solving a wider (compared to existing models) class of problems related to monitoring the atmospheric air in the territories of gas wells under various release conditions, meteorological characteristics, and the drilling rig operation conditions

Highlights

  • All elements of environment are considered as objects of influence during construction and operation of wells

  • 5/10 ( 101 ) 2019 and systems of emergency diagnostics and protection, there is a probability of uncontrolled or poorly controlled pheno­ mena and processes. Such facts are classified as an emergency posing a particular danger to biosphere and, above all, to population

  • Possible causes of occurrence of emergency situations are described in detail in existing literature [4, 5]

Read more

Summary

Introduction

All elements of environment are considered as objects of influence during construction and operation of wells. Current requirements to assessment of this impact on environment cover the necessity of predicting AA pollution in emergency situations but do not contain any specific recommendations. This defines relevance of this study, that is construction of adequate mathematical models of spatial spread of dangerous substances from gushing gas wells (GGW). The models will take into account atmospheric conditions of spread and the release intensity Such mathematical tool will be useful in assessment and prediction of AA pollution level in the areas of well operation in various critical situations

Literature review and problem statement
The aim and objectives of the study
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.