Abstract

Bacterial growth curve, which is asymptotic after a certain period, is described using three different mathematical models, namely, Logistic model, Gompertz model and Richards model. The equations for these three models are fitted by evaluating the mathematical parameters involved in these models. This is done by applying the method of partial sums to the data in Table 1 containing the optical density values for different cell mass at different time intervals. The sum of square of residuals between the expected optical density values and the experimental values is calculated for each of these models. In the cases tested, the Logistic model was found to be the best fit for the growth curve of Pseudomonas putida (NICM 2174) and was found to be easy to use. These results fit the data very well at 5% level for more than 70% of the readings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.