Abstract
The article is devoted to the development of a mathematical model of the combined grinding process. Based on the main provisions of the theory of abrasive processing, dependences are developed to calculate the probability of removal of the material at any point of the contact zone taking into account several simultaneous processes of formation. The electrochemical grinding model presented in the article makes it possible to determine the removal of material from the workpiece taking into account the process of anodic dissolution, mechanical cutting, and their combination of the above processes. In the course of the work, equations are obtained that show that the processing of precision surfaces by a grinding wheel by the CBS method in comparison with the processing of blanks in accordance with the traditional algorithm provides higher accuracy and productivity. The complexity of the physical processes of surface formation connected with a large number of technological factors, with the help of which the parameters of this process can be changed, is shown. The model takes into account the peculiarities of the stochastic nature of the abrasive processing process and the interaction of additional physical processes and technological factors. During the development of the model, graphical dependences of the gap size for any point of the contact zone and the total gap of the part with the circle from the process parameters were obtained. An example of the calculation of the electrochemical removal of material from the unit area of the developed model is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.