Abstract
An approach based on fuzzy set theory is presented in the scientific article to enhance the efficiency of diagnosing kidney diseases by decreasing the time required for making medical decisions. The suggested approach employs fuzzy models and algorithms that consider the uncertainty and variability of clinical data to optimize the assessment of the functional state of the kidneys, taking into account various risk factors and individual characteristics of patients. The paper suggests a technique to develop a system of fuzzy decision rules. This technique combines E. Shortliff’s iterative rules with functions from the studied classes of kidney diseases. Mathematical modeling and experimental studies have indicated relatively high effectiveness in classifying different forms of kidney diseases. The results can be used to formulate intelligent decision support systems in clinical practice and improve diagnostic and monitoring processes. Moreover, the findings may aid in shaping more targeted and effective health policies at the national and regional levels, enhancing access to healthcare, and promoting the population’s overall health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.