Abstract

A hybrid power system configuration based on proton exchange membrane fuel cell (PEMFC), lion-lithium battery (LIB) and supercapacitor (SC) was designed without grid connection for the hybrid tramway. To adapt to the rapid load power change and achieve higher fuel efficiency and optimal oxygen excess ratio (OER) operation of the PEMFC power subsystem, a master-slave energy management strategy based on fuzzy logic hysteresis state machine (FuHSM) and differential power processing compensation (DPPC) was proposed for the hybrid tramway, effectively taking into consideration of the dynamic response and optimum OER tracing of the integrated PEMFC subsystem. The master FuHSM controller was utilized to grantee the optimal power coordination of the multiple power sources and the slave DPPC controller was responsible for further compensating the load power demand to enhance the dynamic performance and bus voltage stability. Furthermore, the equivalent H2 consumption minimization optimization considering characteristics of the proposed energy management strategy was realized by means of EIA-PSO algorithm to further improve the fuel economy of the overall hybrid power system. The results demonstrate that the proposed energy management strategy can guarantee the stability of the hybrid power system throughout the driving cycle. In addition, more efficient power coordination dynamics among the PEMFC, LIB and SC subsystems could be achieved without additional performance degradation of the integrated PEMFC subsystem, and the results of the comparisons with other control strategies verify that the proposed energy management strategy could achieve an increase in fuel efficiency of nearly 7% for the overall hybrid tramway. Finally, the influence of the proposed energy management strategy on the service life of the PEMFC subsystem was detailed discussed, and the performance degradation of the PEMFC subsystem was quantified so as to be integrated into the proposed energy management strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.