Abstract
Targeted metabolomics analysis based on triple quadrupole (QQQ) MS coupled with multiple reaction monitoring mode (MRM) is the gold standard for metabolite quantification and it is widely applied in metabolomics. However, standard compounds for each metabolite and the corresponding analogs are necessary for quantitative measurements. To identify the differentially present metabolites in various groups, determining the relative concentration of metabolites would be more efficient than accurate quantification. In this study, a relatively quantitative targeted method was established for metabonomics research, on the basis of hydrophilic interaction liquid chromatography (HILIC)/QQQ MS operated in MRM mode. The quality control-base random forest signal correction algorithm (QC-RFSC algorithm) was applied for quality control instead of the internal standard method. High quality relative quantification was achieved without internal standards, and integrated peak areas were successfully used for statistical and pathway analyses. Amino acids and neurotransmitters (dopamine, kynurenic acid, urocanic acid, tryptophan, kynurenine, tyrosine, valine, threonine, serine, alanine, glycine, glutamine, citrulline, GABA, glutamate, aspartate, arginine, ornithine and histidine) in serum samples were simultaneously determined with the newly developed method. To demonstrate the applicability of this method in large-scale analyses, we analyzed the above metabolites in serum from patients with major depression. The serum levels of glutamate, aspartate, threonine, glycine and alanine were significantly higher, and those of citrulline, kynurenic acid and urocanic acid were significantly lower, in patients with major depression than in controls. This is the first report of the difference in urocanic acid, a compound reported to improve glutamate biosynthesis and release in the central nervous system, between healthy controls and patients with major depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.