Abstract

Malnutrition is a widespread problem that affects human health, society, and the economy. Traditional maize that serves as an important source of human nutrition is deficient in vitamin-E, vitamin-A, lysine, and tryptophan. Here, favorable alleles of vte4 (α-tocopherol methyl transferase), crtRB1 (β-carotene hydroxylase), lcyE (lycopene ε-cyclase), and o2 (opaque2) genes were combined in parental lines of four popular hybrids using marker-assisted selection (MAS). BC1F1, BC2F1, and BC2F2 populations were genotyped using gene-based markers of vte4, crtRB1, lcyE, and o2. Background selection using 81–103 simple sequence repeats (SSRs) markers led to the recovery of recurrent parent genome (RPG) up to 95.45%. Alpha (α)-tocopherol was significantly enhanced among introgressed progenies (16.13 μg/g) as compared to original inbreds (7.90 μg/g). Provitamin-A (proA) (10.42 μg/g), lysine (0.352%), and tryptophan (0.086%) were also high in the introgressed progenies. The reconstituted hybrids showed a 2-fold enhancement in α-tocopherol (16.83 μg/g) over original hybrids (8.06 μg/g). Improved hybrids also possessed high proA (11.48 μg/g), lysine (0.367%), and tryptophan (0.084%) when compared with traditional hybrids. The reconstituted hybrids recorded the mean grain yield of 8,066 kg/ha, which was at par with original hybrids (mean: 7,846 kg/ha). The MAS-derived genotypes resembled their corresponding original hybrids for the majority of agronomic and yield-related traits, besides characteristics related to distinctness, uniformity, and stability (DUS). This is the first report for the development of maize with enhanced vitamin-E, vitamin-A, lysine, and tryptophan.

Highlights

  • Malnutrition has become one of the alarming health problems leading to lower work efficiency and socio-economic losses worldwide (Allard, 1999)

  • Screening of donor and recipient parents using InDel118 and InDel7 markers of vte4 revealed the presence of favorable alleles in donor parent and unfavorable alleles in recurrent parents for both InDels

  • The benefit of biofortified maize hybrids for human health has been well-documented in several countries

Read more

Summary

Introduction

Malnutrition has become one of the alarming health problems leading to lower work efficiency and socio-economic losses worldwide (Allard, 1999) It affects two billion people especially in the developing countries (Arun et al, 2014). The α-tocopherol content of most of the reconstituted hybrids deviated from the mid-parent value of the introgressed inbred lines, suggesting interactions of various loci affecting tocopherol accumulation and non-additive gene action in the hybrids. Non-additive gene action for various tocopherol components in maize kernel has been reported by Das et al (2019b) These newly derived hybrids rich in vitaminE, vitamin-A, lysine, and tryptophan were high-yielding, and superior to the commercial heck, PVQ9I. These multinutrientrich hybrids assume great significance in alleviating malnutrition through a holistic approach

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.