Abstract

In this study, magneto-thermal lattice Boltzmann model is developed and heat transfer enhancement is investigated for a porous media heat exchanger. First, two models of thermal LBM are discussed in terms of its precision and applicability to magneto-thermal LBM including tolerance range of computational parameter. The implemented magneto-thermal LBM is then validated by convection in a cubic enclosure comparing with finite difference computation. The incompressibility limit of magneto-thermal LBM is additionally discussed. Finally, the effect of magnetic field on a flow through heated porous media is numerically investigated. It is found that, the magneto-thermal force is effective at the stagnant region inside the porous media to enhance the heat transfer. In a macroscopic view, the heat transfer enhancement is found in overall region. The effect becomes remarkable at low Reynolds number flow. Since its effect is aligned on a curve of Nusselt–Reynolds relation, the magnetic effect obviously found to assist the main flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call