Abstract
Conventional surgical site infection (SSI) surveillance is labour-intensive. We aimed to develop machine learning (ML) models for the surveillance of SSIs for colon surgery and to assess whether the ML could improve surveillance process efficiency. This study included cases who underwent colon surgery at a tertiary center between 2013 and 2014. Logistic regression and four ML algorithms including random forest (RF), gradient boosting (GB), and neural networks (NNs) with or without recursive feature elimination (RFE) were first trained on the entire cohort, and then re-trained on cases selected based on a previous rule-based algorithm. We assessed model performance based on the area under the curve (AUC), sensitivity, and positive predictive value (PPV). The estimated proportion of reduction in workload for chart review based on the ML models was evaluated and compared with the conventional method. At a sensitivity of 95%, the NN with RFE using 29 variables had the best performance with an AUC of 0.963 and PPV of 21.1%. When combining both the rule-based algorithm and ML algorithms, the NN with RFE using 19 variables had a higher PPV (28.9%) than with the ML algorithm alone, which could decrease the number of cases requiring chart review by 83.9% compared with the conventional method. We demonstrated that ML can improve the efficiency of SSI surveillance for colon surgery by decreasing the burden of chart review while providing high sensitivity. In particular, the hybrid approach of ML with a rule-based algorithm showed the best performance in terms of PPV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.