Abstract

Janus kinase 2 (JAK2) is emerging as a potential therapeutic target for many inflammatory diseases such as myeloproliferative disorders (MPD), cancer and rheumatoid arthritis (RA). In this study, we have collected experimental data of JAK2 protein containing 6021 unique inhibitors. We then characterized them based on Morgan (ECFP6) fingerprints followed by clustering into training and test set based on their molecular scaffolds. These data were used to build the classification models with various supervised machine learning (ML) algorithms that could prioritize novel inhibitors for future drug development against JAK2 protein. The best model built by Random Forest (RF) and Morgan fingerprints achieved the G-mean value of 0.84 on the external test set. As an application of our classification model, virtual screening was performed against Drugbank molecules in order to identify the potential inhibitors based on the confidence score by RF model. Nine potential molecules were identified, which were further subject to molecular docking studies to evaluate the virtual screening results of the best RF model. This proposed method can prove useful for developing novel target-specific JAK2 inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.