Abstract

Riverine environments play a crucial role in maintaining the stability of river ecosystems as well as biodiversity. Furthermore, the appropriate management of small rivers has a significant impact not only on stable water supplies but also on water resource management. Wide monitoring of the riverside environment including land covers and their changes is an important issue in water resource management. This study aims to develop a high-resolution (10 m) model for classifying riverside land cover by integrating Sentinel-1 synthetic aperture radar (SAR) data and terrestrial characteristics using machine learning algorithms. We constructed a total of 3,284 landcover reference point datasets near the four major rivers of South Korea with five classes: water, barren, grass, forest, and built-up. The Random Forest and Light Gradient Boosting Machine classification models were developed using eight input variables derived from SAR signal and digital terrain data. The models showed an overall cross-validation accuracy exceeding 80% while maintaining consistent spatial distributions, except for the barren class. The false alarms on barren would be corrected through additional sampling processes and incorporating optical characteristics in further study. The high-resolution riverside land cover maps are expected to contribute to the establishment of a comprehensive management system for water resources such as riverside land cover change detection, river ecosystem monitoring, and flood hazard management. Furthermore, the utilization of the next generation medium satellite 5 (C-band SAR) would improve the performance of riverside land cover classification algorithm in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call