Abstract
Nd3+-doped LaNbO phosphor thin films were prepared by radio-frequency magnetron sputtering on Si substrates. The effects of a 1% Nd-doping concentration, after annealing at 1200 °C for 12 h, on the light-emitting properties of the sputtered thin films were characterized via several experimental techniques and deeply discussed. Photoluminescence characterization showed strong emission peaks typical of Nd3+ centers at 880 nm and 1060 nm when a 325 nm wavelength laser source was applied. Similar responses were detected in Nd3+-doped La3NbO7 powder samples fabricated by the solid-state reaction method. The coexistence of two phases (LaNbO4 and La3NbO7) in the thin films with higher nominal thickness was clearly identified based on different structural analyses. The promising results open the possibility for developing phosphor substrates as a preliminary step for the improvement of solar cells based on photon recycling mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.