Abstract

In the present study, fish scale waste was used for the organic synthesis of luminescence CQDs by the hydrothermal method. The impact of CQDs on improved photocatalytic degradation of organic dyes and metal ions detection is examined in this study. The synthesized CQDs had a variety of characteristics that were detected, such as crystallinity, morphology, functional groups, and binding energies. The luminescence CQDs showed outstanding photocatalytic effectiveness for the destruction of methylene blue (96.5%) and reactive red 120 dye (97.8%), respectively after 120 min exposure to visible light (420 nm). The high electron transport properties of the CQDs edges, which make it possible to efficiently separate electron-hole pairs, are attributed to the enhanced photocatalytic activity of the CQDs. These degradation results prove that the CQDs are the outcome of a synergistic interaction between visible light (adsorption); a potential mechanism is also suggested, and the kinetics is analyzed to use a pseudo-first-order model. Additionally, the metal ions detection of CQDs was studied by various metal ions (Hg2+, Fe2+, Cu2+, Ni2+, and Cd2+) in an aqueous solution and results revealed that the PL intensity of CQDs in presence of cadmium ions decreased. Studies show that the organic fabrication of CQDs are effective photocatalyst and may one day serve as the ideal material to reduce water pollution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call