Abstract
To develop low-dose thin-section computed tomographic (CT) protocols for assessment of cystic fibrosis (CF) in pediatric patients and determine the clinical usefulness thereof compared with chest radiography. After institutional review board approval and informed consent from patients or guardians were obtained, 14 patients with CF and 11 patients without CF (16 male, nine female; mean age, 12.6 years ± 5.4 [standard deviation]; range, 3.5-25 years) who underwent imaging for clinical reasons underwent low-dose thin-section CT. Sections 1 mm thick (protocol A) were used in 10 patients, and sections 0.5 mm thick (protocol B) were used in 15 patients at six levels at 120 kVp and 30-50 mA. Image quality and diagnostic acceptability were scored qualitatively and quantitatively by two radiologists who also quantified disease severity at thin-section CT and chest radiography. Effective doses were calculated by using a CT dosimetry calculator. Low-dose thin-section CT was performed with mean effective doses of 0.19 mSv ± 0.03 for protocol A and 0.14 mSv ± 0.04 for protocol B (P < .005). Diagnostic acceptability and depiction of bronchovascular structures at lung window settings were graded as almost excellent for both protocols, but protocol B was inferior to protocol A for mediastinal assessment (P < .02). Patients with CF had moderate lung disease with a mean Bhalla score of 9.2 ± 5.3 (range, 0-19), compared with that of patients without CF (1.1 ± 1.4; P < .001). There was excellent correlation between thin-section CT and chest radiography (r = 0.88-0.92; P < .001). Low-dose thin-section CT can be performed at lower effective doses than can standard CT, approaching those of chest radiography. Low-dose thin-section CT could be appropriate for evaluating bronchiectasis in pediatric patients, yielding appropriate information about lung parenchyma and bronchovascular structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.