Abstract

To achieve the "double carbon" (carbon peak and carbon neutrality) target, low-cost CO2 capture at large CO2 emission points is of great importance, during which the development of low-cost CO2 sorbents will play a key role. Here, we chose peanut shells (P) from crop waste as the raw material and KOH and K2CO3 as activators to prepare porous carbons by a simple one-step activation method. Interestingly, the porous carbon showed a good adsorption capacity of 2.41 mmol/g for 15% CO2 when the mass ratio of K2CO3 to P and the activation time were only 0.5 and 0.5 h, respectively, and the adsorption capacity remained at 98.76% after 10 adsorption-desorption cycle regenerations. The characterization results suggested that the activated peanut shell-based porous carbons were mainly microporous and partly mesoporous, and hydroxyl (O-H), ether (C-O), and pyrrolic nitrogen (N-5) functional groups that promoted CO2 adsorption were formed during activation. In conclusion, KOH- and K2CO3-activated P, especially K2CO3-activated P, showed good CO2 adsorption and regeneration performance. In addition, not only the use of a small amount of the activator but also the raw material of crop waste reduces the sorbent preparation costs and CO2 capture costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call