Abstract

Morphological and vegetation mapping and stratigraphic studies were carried out on a 60 by 250 m low–centered polygon field on a flood–plain of the Riviére Deception in the continuous permafrost zone of northernmost Ungava. Analyses of grain size, water and ice content, deformation structures, and macrorests were carried out on drill–core samples, up to a maximum depth of 3.19 m, and radiocarbon dates were obtained from several peat horizons. Five different vegetational habits were identified: uplifted banks, ice–wedge fissures, hummocky centres, wet polygon centres, and water ponds. The stratigraphic analyses revealed many sand layers and organic layers, alternating with a few layers of segregated ice. In the raises banks, brown fen peats represent former wet conditions prior to bank uplift. Total ice volumes of the core samples from polygon centres and banks averaged 60%, and were generally in the form of pore ice. Segregated ice was concentrated in ice wedges. The Low gradient of the polygon field and the shallow active layer are responsible for impded drainage. The origins of this isolated low–centred polygon field are discussed in terms of special local terrain conditions. River flooding since glacio–isostatic emergence at 6000 BP repeatedly spread alluvial sands onto the low flood–plain, which thus became progressively built up to its present elevation. Peat layers buried by these alluvial sands have permitted the changing local drainage conditions to be radiocarbon–dated for the last 2600 years for the core sites. Impeded drainage, low winter temperatures, probable thin snow cover, rapid sedimentation of flood–plain sands, and high volumetric ice contents have created the critical thermal regime necessary for repeated frost cracking in a polygonal pattern, with concomitant ice–wedge dev–elopment. Ice wedges developed at least as early as 2200 BP, causing the formation of low banks. Further growth of ice wedges deformed the peat and sand layers on the bank margins and led to the rise of the latter to heights of 0.5 to 1 m above the intervening low wet polygon centres. More water was then collected in the depressions, leading to a transformations of the vegetation cover from mossy heath to sphagnum bog, wet fen, sedge‐covered ponds, and eventually in some cases to open‐water pools. The stratigraphic evidence suggests that several generations of high banks formed and disappeared and that their position has changed. Deformation by continued ice–wedge growth has been insignificant since 1000 BP, However. A relatively thick surface peat layer also indicates that sand layers have not been contributed to the polygon field by flooding since ˜ 500 BP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call