Abstract

The Cu-Cu bonding technology is an indispensable vehicle for achieving heterogeneous integration, providing architects and designers with a new solution to address the limitations of transistor miniaturization. In this study, a next-generation efficient-process passivation bonding technology has been developed and investigated. The area-selective passivation bonding platform enables chips to be bonded at ambient temperatures below 200 ℃, while mitigating potential patterning issues and simplifying the complex conventional passivation process. The surface exploration of the area-selective films and their bonding mechanism have been thoroughly investigated through the use of transmission electron microscope (TEM) analyses. The results demonstrate exceptional film quality and the bonded reliability of the area-selective films. Furthermore, devices bonded using an optimized process exhibit more reliable mechanical strength than those bonded using conventional passivation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.