Abstract

Simple SummaryLow-grade serous ovarian carcinoma (LGSOC) is thought to progress from benign cystadenoma in a stepwise fashion via serous borderline tumors (SBTs). This hypothesis is based on pathological and molecular evidence obtained following the genetic analysis of clinical samples from LGSOCs, SBTs, and cystadenomas. However, there have been no reports on the occurrence of LGSOCs following the introduction of oncogenes into benign serous cystadenoma cells. This study successfully developed an in vitro carcinogenic model of LGSOCs by introducing oncogenic KRAS and PIK3CA gene mutations in immortalized HOVs-cyst-1 cells from serous cystadenomas. The established mouse xenograft tumors resulting from the inoculation of HOVs-cyst-1 cells with KRAS and PIK3CA mutations exhibited the micropapillary invasive pattern of LGSOCs with low nuclear atypia without alveoli.Despite the knowledge about numerous genetic mutations essential for the progression of low-grade serous ovarian carcinoma (LGSOC), the specific combination of mutations required remains unclear. Here, we aimed to recognize the oncogenic mutations responsible for the stepwise development of LGSOC using immortalized HOVs-cyst-1 cells, developed from ovarian serous cystadenoma cells, and immortalized via cyclin D1, CDK4R24C, and hTERT gene transfection. Furthermore, oncogenic mutations, KRAS and PIK3CA, were individually and simultaneously introduced in immortalized HOV-cyst-1 cells. Cell functions were subsequently analyzed via in vitro assays. KRAS or PIK3CA double mutant HOV-cyst-1 cells exhibited higher cell proliferation and migration capacity than the wild-type cells, or those with either a KRAS or a PIK3CA mutation, indicating that these mutations play a causative role in LGSOC tumorigenesis. Moreover, KRAS and PIK3CA double mutants gained tumorigenic potential in nude mice, whereas the cells with a single mutant exhibited no signs of tumorigenicity. Furthermore, the transformation of HOV-cyst-1 cells with KRAS and PIK3CA mutants resulted in the development of tumors that were grossly and histologically similar to human LGSOCs. These findings suggest that simultaneous activation of the KRAS/ERK and PIK3CA/AKT signaling pathways is essential for LGSOC development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call