Abstract

An aluminum (Al) matrix hybrid composite reinforced with yttrium tungstate (Y2W3O12) and aluminum nitride (AlN) is synthesized by high energy ball milling followed by compaction and sintering. Y2W3O12, a negative thermal expansion material (−7.1 × 10−6/K), is chosen as one of the reinforcements to lower the coefficient of thermal expansion (CTE) of the composite. AlN is added to the composite in order to improve the strength and thermal conductivity of the composite. X-ray diffraction patterns of the milled powders as well as sintered composites reveal the presence of only Al, AlN and Y2W3O12 peaks indicating no chemical reaction between the matrix and reinforcement during milling and sintering. The scanning electron micrograph shows fairly uniform dispersion of reinforcement in the matrix. Hardness, elastic modulus and CTE are measured by Vickers hardness test, nanoindentation test, and dilatometry, respectively. It is observed that a composite with high hardness, high Young’s modulus and low CTE can be obtained by adding 15 wt% AlN and 30 wt% Y2W3O12 into the Al matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.