Abstract
This work aims to a detailed description of the development of a prototype Transversely Excited Atmospheric (TEA) nitrogen laser and its high-tension electrical pump source, along with its application study of Laser-Induced Fluorescence (LIF). The high-tension pump source is designed and simulated by using NI Multisim to study the voltage behavior at different points. The high-tension pump source is constructed using the flyback transformer. The open-air laser cavity is designed and simulated by using Zemax Optic Studio. Blumlein transmission line equivalent of nitrogen laser is designed in NI Multisim, voltage and current behavior across laser cavity and spark gap are simulated. The air is used as a lasing medium, as it contains 78% molecular nitrogen. The L-shaped electrodes are used as a cavity in the construction of this N<sub>2</sub> laser system. An ignition system in the form of the low inductance spark gap is built using the two bolts. Generally, the current passes through gas either by transverse or longitudinal discharge; in this work, the transverse discharge technique is used. Nitrogen laser produces a beam with a center wavelength of 337.1nm. Laser-induced fluorescence spectrum of the Pyranine is taken which shows its fluorescence in the green region with a maximum peak at the wavelength of 567.5nm. Pyranine is made up of a mixture of C<sub>16</sub>H<sub>7</sub>Na<sub>3</sub>O<sub>10</sub>S<sub>3</sub> so some other peaks can also be seen in the fluorescence spectrum with low intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.