Abstract
Commercial laser interferometers are conventionally used to measure the positioning error of a long linear stage in multiaxis computer numerical control machine tools. However, commercial laser interferometers are costly and difficult to use. Therefore, a low-cost photodetector-based heterodyne interferometer combined with an electronic phasemeter module was proposed for precise measurement of the positioning error of a long linear stage. The proposed heterodyne interferometer was combined with a virtual electronic phasemeter that employs a self-developed signal-processing technique. Our core algorithm and proposed photoelectric-signal-processing technique were developed using the LabVIEW human–machine interface. Moreover, to verify the performance of the proposed heterodyne interferometer, a laboratory-built prototype was constructed and used to measure the positioning error of a long linear stage. The experimental results indicated that the positioning accuracy of the proposed interferometer was ±4.5 μm for a linear stage with a displacement of 250 mm; the results obtained were comparable to those obtained with a commercially available laser interferometer. The proposed heterodyne interferometer can thus be used in other applications related to precision engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.