Abstract
8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), an oxidized form of guanosine residues, is a critical biomarker for various cancers. Herein, a sensitive citrate-capped gold nanoparticle-based aptasensor device has been developed for the detection of 8-oxo-dG in urine. We previously designed a 38-nt anti-8-oxo-dG-aptamer by a computer simulation and the experimental validation has been performed in the present work. The analytical performance of the 38-nt aptamer from the in silico design was compared with the parent 66-nt aptamer. This assay is based on the principle of salt-induced aggregation of citrate-capped gold nanoparticles. Based on this sensing mechanism, the difference between the absorbance in the presence and absence of 8-oxo-dG at λ = 525 nm (ΔA525) increased linearly as a function of 8-oxo-dG concentrations in the ranges of 10–100 and 15–100 nM for 38-nt and 66-nt aptasensors, respectively. This method can provide detection limits of 6.4 nM for 8-oxo-dG in the 38-nt aptasensor and 13.2 nM in the 66-nt aptasensor. Similar to the 66-nt aptamer, the shortened aptamer, 38-nt long, can provide high sensitivity and selectivity with rapid detection time. In addition, using the 38-nt aptamer as a recognition component in the developed portable low-cost device showed high sensitivity in the detection range of 15–100 nM with a detection limit of 12.9 nM, which is much lower than the threshold value (280 nM) for normal human urine. This easy-to-use device could effectively and economically be utilized for monitoring 8-oxo-dG in real urine samples and potentially serve as a prototype for a commercial device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.