Abstract

This work studies the evolution of microstructure, texture, and anisotropy of pure titanium foils by symmetric rolling (SR) and asymmetric rolling (ASR) and subsequent annealing. The as‐received material shows equiaxed alpha grains and strong transverse texture (S‐T texture), which leads to severe anisotropy. The index of plane anisotropy (IPA) of yield stress (YS) and ultimate tensile stress (UTS) of the as‐received material is 15.2% and 7.5%, respectively. With the increase of deformation, the S‐T texture is mainly transformed into a mixed texture of transverse texture (T texture) and rolling direction texture (R texture), which balances the start‐up of the slip system when loading in the rolling direction (RD) and transverse direction (TD), so that the mechanical stress along RD and TD are close to each other and the anisotropy is improved. Especially for the samples prepared by ASR and annealing, the appearance of more R texture or basal texture (B texture) at the same deformation makes them show lower anisotropy. Therefore, after the same annealing treatment, the IPA of titanium foil with a thickness of 0.2 mm prepared by ASR is the smallest, which is 6.6% and 0.03%, respectively, while the IPA prepared by SR is 10.5% and 2.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call