Abstract
Heat pipe is a heat conductor which has a large conduction capacity using a special fluid-filled pipe as a conductor of heat from the hot end (evaporator) to the cold end (condenser) used for thermal management. In the heat pipe, there is a sintered wick which transfers refrigerant fluid from condenser to evaporator. The objective of this research is to improve capillary performance by making a straight pore called as lotus-type porous material (LTP) using centrifugal slip casting technique. Copper powder is used as wick materials due to its high thermal conductivity. A starch solution is used as binder material to make the copper slurry. Nylon wire is applied as straight pore mold. Freeze drying is applied to curing and demolding. Vacuum sintering is conducted to increase metallurgical bonding between the particle. The results show that centrifugal casting machine is capable to make a wick with LTP structure. On the performance department, capillary pumping is affected by rotation speed, powder size, and powder loading. The optimum parameters were copper powder with 260.54 μm powder size, 50% Powder Loading with 688 rpm rotation speed. The LTP wick is proved to have a higher capillary pumping capacity compared to the conventional wick. Further work is necessary to verify the performance of LTP wick in the heat pipe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.