Abstract

Sporothrix schenckii is the causative agent of sporotrichosis, which most commonly causes lymphocutaneous infections in immunocompromised hosts. This pathogen infects dogs, cats, cattle, and buffaloes and can potentially infect humans. Diagnosis by fungal culture is lengthy, and although there are several clinical diagnoses and molecular methods, these are complicated and time-consuming for veterinarians. This study aimed to develop a visual diagnostic assay that is less time-consuming and can be used by veterinarians to screen for sporotrichosis. To develop a loop-mediated isothermal amplification (LAMP) assay for sporotrichosis, primers specific for fragments of the 18S rRNA gene of S. schenckii were designed. Then, the time and temperature were optimized to successfully achieve LAMP. Ten-fold serial dilutions of DNA were used to determine the detection limit using both LAMP and nested polymerase chain reaction (nPCR) assays. The optimal LAMP conditions were incubation at 73°C for 30 min. Agarose gel electrophoresis revealed a ladder-like pattern of the LAMP product, and a sky-blue color indicated a positive result. A comparison of the LAMP assay with nPCR revealed that it was 10 times more sensitive than nPCR, with a detection limit of 10 pg. The use of a heat box compared with a thermocycler gave the same results. Loop-mediated isothermal amplification gives good results and may represent a future alternative diagnostic tool for screening fungal pathogens before the results of conventional fungal cultures are received. However, this method should be further studied to clarify its use with clinical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.