Abstract
We fabricated short samples and a 93 m long coated conductor (C. C.) of EuBa2Cu3O7-δ (EuBCO) with BaHfO3 (BHO) by the IBAD and the PLD methods, which exhibited the high in-field minimum Ic value, (Ic(min)), performance of 141.2 (77K in 3 T) and 411.3 (65K in 3 T) A/cm-w for a short sample, and 133.9 (77K in 3 T) A/cm-w for 93 m long C. C. with 3.6μm in thickness, respectively. Moreover, this long EuBCO with BHO coated conductor also showed high uniform longitudinal Ic distributions and n-value in magnetic fields. However, the deposition rate for obtaining the high in-field Ic performance was comparatively slow down to 10μm/h. To realize the low production cost for EuBCO with BHO coated conductors, improvement of the deposition rate of the EuBCO with BHO layer with high Ic is required. To solve this problem, we optimized growth conditions including deposition conditions. One of the objectives of this work was changing the layer growth mode from the vapor-solid (VS) mode to the vapor-liquid-solid (VLS) one to fabricate EuBCO with BHO layers for achievement of high production rate and maintaining the high in-field Ic and Jc performance of the films deposited at slow deposition rates. As a result, we fabricated EuBCO with BHO coated conductors at a high deposition rate of about 40μm/h and production rate of about 10 m/h, which revealed the Ic(min) value of 48.7 A/cm-w at 77K in 3 T for 1.35μm in thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.