Abstract

We have developed a LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES) to assess the safety at nuclear facilities and to respond to emergencies against accidental or intentional release of radioactive materials (e.g., a terrorist attack in an urban area). In Part 1, the unsteady behavior of a plume over a flat terrain was successfully simulated. In Part 2, a new scheme to generate a spatially developing turbulent boundary layer flow was proposed. Then, the large-eddy simulation (LES) model for turbulent flow and plume dispersion around an isolated building was validated. In this study, we extend the LES model to turbulent flows and plume dispersion in various building arrays that represent typical urban surface geometries. Concerning the characteristics of flow and dispersion in building arrays, the flow patterns associated with obstacle densities and the distribution patterns of mean and root-mean-square (r.m.s.) concentrations agree well with those of the wind tunnel experiments. It is shown that the LES model successfully simulates the unsteady behaviors of turbulent flows and plume dispersion in urban-type surface geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.