Abstract
This paper extends the work of Part I to be applicable to prismatic block fuel elements and presents a model developed for determining fuel compact and fuel block temperatures of a prismatic core modular reactor. The model is applicable both in normal operation and under fault conditions and is an extension of the multiscale modeling techniques presented in Part I. The new model has been qualified by comparison with finite element simulations for both steady-state and transient conditions. Furthermore, a model for determining the effective conductivity of the block fuel elements—important for heat removal in loss of flow conditions—is presented and, again, qualified by comparison with finite element simulations. A numerical model for predicting conduction heat transfer both within and between block fuel elements has been developed, which, when coupled with the above multiscale model, allows simulations of whole cores to be carried out, while retaining the ability to predict the temperatures of individual coolant channels and individual coated particles in the fuel if required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.