Abstract

Lignocellulosic biomass is regarded as a promising option for biofuels production to address the climate change and energy security. Nevertheless, worries about its influence on water have been raised, as massive production of biofuels may put pressure on the quality of water and supplies of fresh water. Thus, it is crucial to assess the influence of biofuel technology on water resource for the sustainable development of biofuel future. Life cycle water footprint analysis is a useful tool to address the above problems. Life cycle water footprint research on pine to biobutanol via thermochemical method is presented in this study. The results of this paper demonstrate that the total water use for the whole system is 145.96 L H2O/MJ biobutanol and the total water use is dominated by pine production stage. Scenario analysis reveals that the stage of biobutanol producing is the largest section for the life cycle water footprint without pine production stage. In addition, the base case scenarios’ results are considered as accurate through uncertainty analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call