Abstract

SUMMARYThis paper presents lattice Boltzmann Bhatnagar–Gross–Krook (LBGK) model and incompressible LBGK model‐based lattice Boltzmann flux solvers (LBFS) for simulation of incompressible flows. LBFS applies the finite volume method to directly discretize the governing differential equations recovered by lattice Boltzmann equations. The fluxes of LBFS at each cell interface are evaluated by local reconstruction of lattice Boltzmann solution. Because LBFS is applied locally at each cell interface independently, it removes the major drawbacks of conventional lattice Boltzmann method such as lattice uniformity, coupling between mesh spacing, and time interval. With LBGK and incompressible LBGK models, LBFS are examined by simulating decaying vortex flow, polar cavity flow, plane Poiseuille flow, Womersley flow, and double shear flows. The obtained numerical results show that both the LBGK and incompressible LBGK‐based LBFS have the second order of accuracy and high computational efficiency on nonuniform grids. Furthermore, LBFS with both LBGK models are also stable for the double shear flows at a high Reynolds number of 105. However, for the pressure‐driven plane Poiseuille flow, when the pressure gradient is increased, the relative error associated with LBGK model grows faster than that associated with incompressible LBGK model. It seems that the incompressible LBGK‐based LBFS is more suitable for simulating incompressible flows with large pressure gradients. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call