Abstract

AbstractThe seismic anisotropy observed in Earth's lowermost mantle (D″ layer) is thought to originate from the lattice‐preferred orientation (LPO) of mantle materials induced by plastic deformation. Ferropericlase is the second most abundant mineral in the lower mantle, and its LPO induced by deformation may significantly contribute to the seismic anisotropy in the D″ layer. The slip system(s) of ferropericlase controlling the LPO in the D″ layer is still controversial, owing to technical difficulties in conducting high‐pressure deformation experiments. We conducted shear deformation experiments on MgO under pressures of up to 120 GPa and reported the LPO after the deformation experiments. Our results indicate that {100}<011> is the dominant slip system in the D″ layer. The LPO developed during shear deformation would result in shear wave splitting with VSH > VSV, consistent with seismic observations in the regions expected to accommodate large shear strain by subducted slabs in the D″ layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call