Abstract

The injection of CO<sub>2</sub> into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO<sub>2</sub> and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO<sub>2</sub> leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.