Abstract

Abstract The United States Department of Energy Office of Fossil Energy and the Ohio Coal Development Office (OCDO) have led a U.S. consortium tasked with development of the materials technology necessary to build an advanced-ultra-Supercritical (A-USC) steam boiler and turbine with steam temperatures up to 760°C (1400°F). Part of this effort has focused on the need for higher temperature capable materials for steam turbine components, specifically cast nickel-base superalloys such as Haynes 282 alloy. As the size of the needed components is much larger than is capable of being produced by vacuum casting methods typically used for these alloys, an alternative casting process has been developed to produce the required component sizes in Haynes 282 alloy. The development effort has progressed from production of sub-scale sand castings to full size sand and centrifugal castings. The aim of this work was to characterize the microstructure and properties of a nickel alloy 282 casting with section size and casting weights consistent with a full sized component. A 2720 kg (6000 lbs.) nickel alloy 282 sand casting was produced and heat treated at MetalTek International. The casting was a half valve body configuration with a gating system simulated and optimized to be consistent with a full sized part. Following casting, heat treatment and NDE inspections, the half valve body was sectioned and tested. Tensile and high temperature creep was performed on material from different casting section thicknesses. Further analysis of the microstructure was carried out using light microscopy (LM), scanning electron microscopy (SEM), and X-ray spectroscopy (EDS). The paper also presents the mechanical properties obtained from the various sections of the large casting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.