Abstract

BackgroundLand Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure measurements and models.MethodsAir pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a national level. Models were validated using leave-one-out cross-validation, as well as independent external validation with routine monitoring data.ResultsModel explained variance (R2) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for NO2 (R2 range 0.52–0.89) outperformed combined-area alpine (R2 = 0.53) and non-alpine (R2 = 0.65) models in terms of both cross-validation and independent external validation, and were better able to account for between-area variability. Predictor variables related to traffic and national dispersion model estimates were important predictors.ConclusionsLUR models for all pollutants captured spatial variability of long-term average concentrations, performed adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model predictions than in the measurements, so it will remain challenging to disentangle their health effects.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-016-0137-9) contains supplementary material, which is available to authorized users.

Highlights

  • Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce

  • This paper describes the development, performance and validation of multi-area LUR models for nitrogen dioxide (NO2), particulate matter

  • NO2 was measured with passive diffusion samplers (Passam AG, Männedorf, Switzerland), PM2.5 and PM10 were collected on filters using Harvard Impactors, PM2.5 absorbance was measured as reflectance on PM2.5 filters using a smoke stain reflectometer, and PNC and LDSA measurements were conducted with the Miniature Diffusion Size Classifier (MiniDiSC) (Fachhochschule Nordwestschweiz, Switzerland) [35]

Read more

Summary

Introduction

Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially scarce. Land Use Regression (LUR) modeling has become a popular method for explaining the observed contrasts [5,6,7,8,9,10], as well as estimating outdoor pollution concentrations at the homes of participants of large epidemiological studies [11,12,13,14]. In LUR, a regression model is developed which links the air pollution concentrations observed in the network to the most predictive environmental characteristics, such as traffic, land use and population. The MiniDisc devices used in our study could be deployed for longer periods with relatively little maintenance

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.