Abstract

Recent progress in the performance of intermediate temperature (500–600°C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. Under the U.S. DOE ARPA-E REBELS program, the Colorado School of Mines (Mines), in collaboration with Fuel Cell Energy (FCE), is developing durable, kW-scale PCFC stacks and system concepts. Results from cell scale-up efforts are reviewed. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (<1.5%/1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. The success of scale-up efforts towards commercially viable, kW-scale cell platforms is given, inclusive of short stack test results. System-level work shows that trade-offs between lower cell power densities (due to lower operating temperature), lower-cost materials, manufacturing processes, and balance-of-stack components exist which can offer competitive advantage for PCFCs in various stationary power applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.