Abstract

Natural gas is known as the main source of energy and also contains significant and noble gases. Numerous researches have been performed to present novel methods for the detection and analysis of natural gas. In this study, Direct Simulation Monte Carlo (DSMC) method is used to evaluate the performance of a new micro gas sensor (MIKRA) for detection of helium in CH4/He gas mixture. In this sensor, the temperature difference of two arms inside a rectangular domain at low-pressure condition induces a Knudsen force which is proportional to physical properties of the gas. In order to define flow feature of a low-pressure gas inside the micro gas actuator, high order equation of Boltzmann is used to attain high precision results. To solve these equations, DSMC approach is used as a robust method for the non-equilibrium flow field. The effects of main factors such as length and gap of arms are comprehensively investigated in different ambient pressures. Furthermore, the effect of various concentrations of the CH4/He gas mixture on force generation is comprehensively studied. Our findings show that value of generated Knudsen force significantly different when the fraction of He in CH4/He gas mixture is varied. This indicates that this micro gas sensor could precisely detect the concentration of Helium gas inside a low-pressure CH4/He gas mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call